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SCATTERING AT RIGID BUILDING CORNERS

F. P. M

Landhausstrasse 12, D-71120 Grafenau 1, Germany

(Received 12 May 1998, and in final form 20 July 1998)

In this paper the topic of two precedent papers [1, 2] (Journal of Sound and
Vibration 216, 649–671, 673–696), about sound fields in wedge-shaped spaces, is
resumed and continued. Whereas the wedge angle in reference [1] is restricted to
small values (below about 15°) and in reference [2] to medium values (below about
50°), the wedge space now is obtuse. As a further difference from the precedent
papers, where the flanks of the wedge are absorbing, they are rigid in the present
paper. It will be shown how sound sources are introduced into the field analysis,
and how the singularity of the field in the wedge apex can be treated. Both
sub-tasks are common to the theories for other wedge angle ranges, when the
sound field is synthesized with wedge modes. A field of application of the present
theory is the sound scattering by building corners and the noise shielding by
buildings. When noise maps of the traffic noise in cities or of industrial noise in
industrial plants need to be drawn, such scattering computations must be
performed in a very great number of such cases. Therefore it is a task of this
contribution to cast the results of the analytical evaluation into a form which is
easily computed.
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1. INTRODUCTION

The present paper is a member of a series of previous papers [1, 2] and of
forthcoming papers which all have as their common topic the sound field analysis
in wedge-shaped spaces. The common aim is the field synthesis with wedge modes,
which are mutually orthogonal between the wedge flanks. The first contribution
[1] displayed the reasons for the special difficulties which are encountered in
wedge-shaped spaces and a solution was derived for small wedge angles U0 (below
about 15°). In the second contribution [2] the wedge was replaced by a cascade
of straight duct sections and therefore it is limited to medium wedge angles (below
about 50°). In both preceding papers the wedge flanks may be lined with locally
reacting absorbers. The present paper is concerned with conditions of ideally
reflecting flanks (either rigid or soft or mixed) which, as shown in reference [1],
allows an easy modal analysis to be performed with ‘‘ideal wedge modes’’. The
reasons for this paper are twofold. First, it shall be shown in the ‘‘easy
environment’’ of ideal modes how sound sources in the wedge space are introduced
into the analysis, and how the problems with the singular wedge apex can be
handled, if the apex belongs to the sound field region. Both sub-tasks are common
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to many other tasks in wedge-shaped spaces, when they are treated by a modal
analysis.

Second, the present analysis has an eminently important application. Because
the wedge angle may have any value 0QU0 E 2p, the present analysis can be
applied also for obtuse wedge spaces as they are formed by building corners; see
Figure 1. The scattering of sound by building corners and the shielding of noise
by buildings (for sound propagation in a vertical plane over the building as well
as in a horizontal plane around the building) evidently play important roles in the
prediction of noise in urban environments and near industrial plants. In such
predictions the noise level reduction by buildings must very often be computed.
The analytical results displayed below for the corner scattering—although they are
much simpler than the results in references [1, 2]—would need too long computing
times in practical applications. Therefore it is an aim in this paper to cast the
numerical results of the modal analysis into a form which permits fast
computations. In the pursuance of this aim the shielding by a building is
subdivided into the evaluation of the free field sound pressure of the sound source
at the nearest corner and a sequence of single corner scatterings for the evaluation
of the sound pressure (incident plus scattered sound) at the next corner. This
subdivision is possible under the condition that multiple scattering between
succeeding corners can be neglected (i.e., the corners are not too close to each
other). The numerical results of the single corner scattering then will be
approximated by polynomials which reproduce the analytical results with an error
below about 1/2 dB for a cylindrical sound source and about 1/4 dB for an incident
plane wave.

The evaluation of noise maps, i.e. of the shielding by buildings, has been
described in standard rules and prescriptions, e.g., in reference [3]. The scattering
by a building corner there is computed with the well-known Maekawa formula,

Figure 1. Scheme and co-ordinates of a rigid corner with ‘‘wedge angle’’ U0 and a line source at
Q with co-ordinates (rq , qq ). The radius rq defines two field zones (1) and (2). See the text for the
cylinder with diameter 2a at the corner.
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i.e., as a function of the ratio s/l0 of the difference s of the path length from the
line source over the corner to the receiver minus the direct source-receiver distance
to the wave length l0. The application of the Maekawa formula implicitly assumes
that the scattering is produced by a thin screen which, in our notation, is associated
with a wedge angle U0 =2p; and it is further assumed that the point of immission
is in the far field. It will be seen below that the wedge angle of the building corner
(e.g., U0 =3p/2 for a cubic building) is deeply involved in the analysis. It is of some
interest to compare results obtained by using the real wedge angle of a corner with
those obtained by using the wedge angle of a screen.

The next section is concerned with the single corner scattering for a line source
which is parallel to the corner (in Figure 1 the distance b of the second corner
is supposed to be very large). In the following section the source radius rq

goes to infinity, leading to the analysis of the single corner scattering for an
incident plane wave. Numerical examples will then show that at some distance
from the scattering corner the sound field at the flank behind the corner is
similar to a field pattern which a line source placed in the corner would produce
there. Thus, in the evaluation of the scattering at the next corner, the first
corner can be replaced by an equivalent line source. This finding is the basis
for the repeated single corner scattering in the determination of the shielding of
a building. The final procedure will be the simplification of the sound pressure
level computations by polynomials (instead of lengthy sums of Bessel and Hankel
functions). These simplifications will be performed for three wedge angles:
U0 =270°, which belongs to the important case of rectangular building corners,
and U0 =225° which together with U0 =270° are the wedge angles at the
eaves and the ridge of a typical saddle roof, and U0 =360°, which belongs to a
thin rigid screen. In the last case the usual condition of large kr, krq can be avoided
here.

2. SINGLE CORNER SCATTERING WITH A LINE SOURCE

For this problem one can take the co-ordinates of Figure 1 (with b:a) and
a line source at Q with the source co-ordinates rq , qq . The source radius rq defines
the zone (1) with 0E rE rq and the zone (2) with re rq . Evidently the sound field
must be steady at r= rq , except at q= qq . The cylinder with diameter 2a at the
corner in this paper is an artefact (in a forthcoming paper it will play the main
part); it is assumed to have a locally reacting surface with a radial surface
admittance G (a rigid cylinder with G=0 is just a special case). The introduction
of this cylinder takes out the corner apex from the sound field and so avoids
discussions in the field formulation’s behaviour at the origin. Following this, the
cylinder will vanish by the limit procedure a:0, giving the result without the
artefact.

Field formulations of the form

p(r, q, z)= s
h

Rh (r)T(hq)Z(kzz) (1)
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are sought, where the factor Z(kzz) may be one of the functions e2jkzz, cos (kzz),
sin (kzz) or a linear combination thereof with a given wave number kz . Because
Z(kzz) will appear as a factor in all field representations, one can drop it (like the
time factor ejvt); the only consequence of a value kz $ 0 will be a modification of
the radial wave number (see below). A general form of the azimuthal factor is
T(hq)= ah cos (hq)+ bh sin (hq). With the choice of the q-origin in a rigid flank
the second term disappears: i.e., T(hq)= cos (hq). The terms summed in equation
(1) are orthogonal over q in 0E qEU0 if h=const (q), and they satisfy the
boundary conditions at the two rigid flanks if they are solutions of the
characteristic equation

(hnU0) tan (hnU0)=0. (2)

Solutions of equation (2) are hn = np/U0, n=0, 1, 2, . . .. Because also
h=const (r) holds, the wave equation for the nth mode in the co-ordinates r, q

becomes

0 12

1r2 +
1
r

1

1r
+

1
r2

12

1q2 + k21 pn (r, q)=0 12

1r2 +
1
r

1

1r
+ k2 −

h2
n

r21 pn (r, q)=0,

k2 = k2
0 − k2

z , (3)

which is a Bessel differential equation with general solutions of the form

Rh (r)=Rn (kr)= cnH(1)
hn

(kr)+ dnH(2)
hn

(kr), (4)

where H(i)
hn
(kr) are Hankel functions, propagating radially inward for i=1 and

outward for i=2. They have orders hn e 0 which either are fractional or real in
general (depending on the value of U0).

Therefore, one can formulate the sound field in the zone (1) with aE rQ rq as

p1(r, q)= s
ne 0

AnH(2)
hn

(krq )[H(1)
hn

(kr)+ rnH(2)
hn

(kr)] cos (hnq),

Z0vr1 =
jk
k0

s
ne 0

AnH(2)
hn

(krq )[H'(1)
hn (kr)+ rnH'(2)

hn (kr)] cos (hnq), (5)

and in zone (2) with rq Q rQa as

p2(r, q)= s
ne 0

An [H(1)
hn

(krq )+ rnH(2)
hn

(krq )]H(2)
hn

(kr) cos (hnq),

Z0vr2 =
jk
k0

s
ne 0

An [H(1)
hn

(krq )+ rnH(2)
hn

(krq )]H'(2)
hn (kr) cos (hnq). (6)

A prime on the functions indicates the derivative with respect to the argument.
This formulation satisfies the boundary conditions at the flanks and Sommerfeld’s
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far field condition; it is steady in the sound pressure at the zone limit r= rq . It
contains inward and outward propagating modes for rQ rq and only outward
propagating modes in rq rq . The factors rn evidently are radial reflection factors;
they can be defined at the surface of the cylinder covering the origin. Due to the
orthogonality of the modes, the boundary condition at the cylinder must be
obeyed term-wise, giving

rn =−
Z0GH(1)

hn
(ka)+ j(k/k0)H'(1)

hn (ka)
Z0GH(2)

hn
(ka)+ j(k/k0)H'(2)

hn (ka)

=−
[(hn /k0a)− jZ0G]H(1)

hn
(ka)− (k/k0)H(1)

hn +1(ka)
[(hn /k0a)− jZ0G]H(2)

hn
(ka)− (k/k0)H(2)

hn +1(ka)
. (7)

In the second line the known relation for derivatives of Hankel functions was used.
In the limit a:0, neglecting Bessel functions as compared to Neumann functions,
which both are contained in the Hankel functions H(1,2)

n (ka)= Jn (ka)2 jYn (ka),
one gets rn:1 for a:0. In that limit the field formulations become

p1(r, q)=2 s
ne 0

AnH(2)
hn

(krq )Jhn (kr) cos (hnq),

p2(r, q)=2 s
ne 0

AnJhn (krq )H(2)
hn

(kr) cos (hnq). (8)

One boundary condition is still available: the fitting of the radial particle velocities
at the zone limit r= rq to the volume flow of the line source, i.e., the relation

vr2(rq +0)− vr1(rq −0)=
!

qd(q− qq ), (9)

where q is the volume flow density of the source and d(q− qq ) is the Dirac
function. The sound pressure field of the line source (the factor Z(kzz), which is
‘‘produced’’ by the source, is dropped here also) in the radial co-ordinate r centred
at the source is

pQ (r)= 1
4Z0k0rqH(2)

0 (kr). (10a)

In fact this relation can be used to express q by the free field sound pressure pQ (r)
at a distance r:

Z0q=
4

k0rH(2)
0 (kr)

pQ (r). (10b)

Because cos (hnq) is a complete orthogonal set of functions, one can expand the
Dirac function in such terms:

d(q− qq )= s
ne 0

bn cos (hnq). (11)
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Application of the integral

g
U0

0

· · · cos (hnq) dq

to both sides gives on the left-hand side cos (hnqq ) and on the right-hand side
U0Nnbn with the norms Nn of the modes given by

Nn =
1
U0 g

U0

0

cos2 (hnq) dq=
1
2 01+

sin (2hnU0)
2hnU0 1=61,

1/2,
n=0
nq 07. (12)

Thus:

d(q− qq )=
1
U0

s
ne 0

1
Nn

cos (hnqq ) cos (hnq). (13)

The boundary condition (9) must be satisfied term-wise (again because of the
orthogonality of the modes), which leads to

An [H(1)
hn

(krq )H'(2)
hn (krq )−H'(1)

hn (krq )H(2)
hn

(krq )]=−j
k0

k
Z0q
U0Nn

cos (hnqq ). (14)

The bracket contains the Wronski determinant of Hankel functions with the value
[· · ·]=−4j/(pkrq ), and one has

An =
p

4
k0rq

Z0q
U0Nn

cos (hnqq )=
p

U0Nn

pQ (0)
H(2)

0 (krq )
cos (hnqq ). (15)

In this last expression equation (10b) has been used in which the free field sound
pressure of the source at the corner is denoted by pQ (0), because the corner is the
origin of the co-ordinate system (r, q). Thus, the sound pressure field around a
single rigid corner, which is excited by a line source producing a free field sound
pressure pQ (0) at the corner, is known from equations (15) and (8).

The limit rn:1 for a:0 in equation (7) is difficult to show analytically. This
is one reason for applying the identical replacement

rn =1+(rn −1)=1−2Cn , 2Cn =1− rn , (16)

to get

Cn =
Z0GJhn (ka)+ j(k/k0)J'hn (ka)

Z0GH(2)
hn

(ka)+ j(k/k0)H'(2)
hn (ka)

,

Cn ---#
Z0G:0

J'hn (ka)
H'(2)

hn (ka)
, Cn ---#

Z0G:a

Jhn (ka)
H(2)

hn
(ka)

, Cn ---#
ka:0

0. (17)
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With this replacement the field formulations for a corner with a cylinder around
the origin become

p1(r, q)= p1,Corner + p1,Cyl

=
2p

U0

pQ (0)
H(2)

0 (krq )
s

ne 0

cos (hnqq )
Nn

H(2)
hn

(krq )Jhn (kr) cos (hnq)

−
2p

U0

pQ (0)
H(2)

0 (krq )
s

ne 0

Cn
cos (hnqq )

Nn
H(2)

hn
(krq )H(2)

hn
(kr) cos (hnq), (18a)

p2(r, q)= p2,Corner + p2,Cyl

=
2p

U0

pQ (0)
H(2)

0 (krq )
s

ne 0

cos (hnqq )
Nn

Jhn (krq )H(2)
hn

(kr) cos (hnq)

−
2p

U0

pQ (0)
H(2)

0 (krq )
s

ne 0

Cn
cos (hnqq )

Nn
H(2)

hn
(krq )H(2)

hn
(kr) cos (hnq). (18b)

The sound fields in the two zones are split into two sums. The first sum does not
contain any information about the cylinder, and for Cn:0 if a:0 it becomes the
field formulation of equations (8); so it represents the field of the corner without
the cylinder. The second sum represents the field contribution due to the existence
of the cylinder. It will be the topic of a forthcoming paper to describe the potential
for improving the sound shielding of corners if they are equipped with cylinders
of a ‘‘suitable’’ surface admittance, and how a suitable admittance can be defined
and realised. A similar analysis was used by Möser [4], and at the same time by
this author [5], to evaluate the efficiency of absorbing cylinders on screens to
improve the shielding; the wedge angle in the case of a screen is U0 =2p, and
hn = n/2.

3. SINGLE CORNER SCATTERING WITH AN INCIDENT PLANE WAVE

The plane wave incidence case is obtained by displacing the line source to
infinity, rq:a, letting qq =const and increasing the volume flow density q of the
source so that the free field sound pressure pQ (0) at the corner remains the same.
Using the asymptotic expansion of Hankel functions one gets

H(2)
hn

(krq )
H(2)

0 (krq ) ---#
rq:a

ejhnp/2 (19)
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and with this from equation (18a) (now all the field is in zone (1)) becomes

p(r, q)= pCorner + pCyl

=
2p

U0
pQ (0) s

ne 0

e jhnp/2

Nn
Jhn (kr) cos (hnqq ) cos (hnq)

−
2p

U0
pQ (0) s

ne 0

Cn
e jhnp/2

Nn
H(2)

hn
(kr) cos (hnqq ) cos (hnq). (20)

Again the second sum disappears if there is no cylinder at the origin. Note that
the first sum can be reduced to the Fresnel integral in the case of U0 =2p, and
the Fresnel integral is a part of the sum for U0 being a small fraction of p; but
since such simplifications are not possible for general values of U0 this possibility
is not displayed here in more detail.

4. NUMERICAL EVALUATION METHODS

Henceforth only the first sums in equations (18a), (18b) and (20) are considered.
These expressions are simple in their structure, but possibly their numerical
evaluation is delicate. The critical question is ‘‘up to which index limit nhi should
the summation proceed?’’ The answer is relatively easy in the case of equation (20).
There the convergence of the sum is produced by the Bessel functions Jhn (kr). These
functions steeply decrease with increasing n, if hn q kr. If the summation is
performed until the Bessel functions have assumed an order of magnitude
=Jhn (kr)=1 10−M, with M=8 as a reasonable compromise between precision and
computing time, then the summation should proceed up to

nhi 1
U0

p 61+ kr$1+1·9150M−1
kr 1

0·676

%7 . (21)

kr will be allowed to go up to kr=100; the nhi then assume values of about
nhi =200 for U0 =3p/2.

The evaluation becomes delicate in the case of a line source, i.e., of the equations
(18a) and (18b). There the Bessel function contains as argument the smaller one
of the two values kr, krq , and the Hankel function has the larger value as its
argument. When the order hn of the Neumann function Yhn (x) (which is contained
in the Hankel function) exceeds the argument x, then the Neumann function
steeply increases. Even then the sums would converge if the functions in the terms
were computed with a very high precision, but the convergence then is produced
by a partial compensation of large terms with alternating signs. It is known that
this principle of convergence fails if the terms are evaluated with numerical errors.
The sums in equations (18a) and (18b) then assume the behaviour of asymptotic
sums: they converge up to a certain limit of the summation index; if this limit is
exceeded they diverge. Therefore, the summations in equations (18a) and (18b) are
performed without a convergence test up to an index nhi which is obtained from
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Figure 2. Sound pressure level around a right-angled rigid corner produced by a line source at
(rq , qq ) on the illuminated flank. The ring-shaped gap is at kr= krq .

equation (21) by setting M=4. The summation then is continued as long as the
relative contribution =term=/=sum= of a new term is smaller than the contribution
of the earlier term. The most critical situation evidently is the case kr= krq .
With an eight-digit precision in the evaluation of the Hankel functions the errors
become visible in the final sound pressure levels at kr= krq with deviations of
about 21 dB for small kr values, increasing up to about 22·5 dB at kr=100 if
kr= krq is avoided. These errors shall be tolerated, because the final acquisition
of the results (representation of the levels by polynomials) will eliminate these
errors (see below).

In any case, however, the computing time with the analytical expressions for
the sound pressure field is prohibitively long in practical tasks where a great
number of sound pressure level computations must be performed (where
computing times are indicated below, they are those for evaluations with
non-compiled Mathematica8 programs on a 35-MHz computer; compiled
programs on modern computers would be much faster). That is the reason for
recasting the results in a more easily computable form, which will be described in
a later section.
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Figure 3—(Caption opposite).



     115

5. NUMERICAL RESULTS OF SINGLE CORNER SCATTERING WITH A
LINE SOURCE

In this section the corner is mostly right-angled, i.e., the wedge angle is
U0 =3p/2 or 270°. A line source is considered first. The sound pressure
distribution of the factor Z(kzz) along the corner direction must not be discussed,
because the sound pressure field p(kr, q) is referred to the sound pressure pQ (0)
of the source at the corner, which would have the same factor, so that the common
factor would cancel. And the modification of the radial wave number from k0 to
k according to equation (3) must not be considered if one uses kr and krq as radial
variables.

Figure 2 shows a 3D-plot of the sound pressure level L(kr, q)=20 lg =p(kr, q)/
pQ (0)= for krq =10 and U0 = qq =270° (i.e., the line source is on the ‘‘illuminated’’
flank); the radial variable is changing in steps of Dkr=1 (beginning with
krmin =0·5) and the angle q of the field point in steps Dq=7·5°. The gap in the
radial direction indicates kr= krq . The peak is at the place of the source; the level
there is finite, because kr= krq is avoided (the evaluation of the graph takes about
8 min). Figure 3(a) is a similar diagram, only the source angle is changed to
qq =225°; Figure 3(b) with the same parameters shows more details in zone (1)
with krQ krq . The interference variations on the illuminated side are much
stronger if the source is a distance from the flank rather than with the source on
the flank. The field in the shadow zone, however, is steady. It is important to note
that the field approaches the shadow flank with a zero slope. Thus, the field pattern
at the shadow flank in the azimuthal direction is very similar to the pattern which
a line source in the corner with a suitable source strength would produce at this
flank. This finding is the basis for the procedure of the field evaluation behind more
than one corner, which will be described below; the field at a succeeding corner
is assumed as being produced by a line source in the preceding corner.

For that procedure one needs the sound pressure level on the shadow flank, i.e.,
for q=0. Figure 4(a) shows L(kr, 0) over kr for a small source distance krq =3·55,
and Figure 4(b) shows this for a larger source distance krq =56·6 (the values of
krq were selected midway between sampling points of kr); in both diagrams the
source angle qq is varied. In Figure 4(a) variations of the curves can be seen at
kr1 krq due to numerical errors (as explained in the previous section). These
variations disappeared when the computation was repeated with a 15-digit
precision of the Hankel functions; thus they can be ignored in the further
discussions. The branch of the curves for krq krq is a smooth continuation of the
branch for krQ krq , although both branches are generated by different equations,
(18b) and (18a), respectively. The parameter values of qq in Figures 4(a) and 4(b)
begin with qq =180°, for which the second flank changes from a flank in the
shadow to a directly illuminated flank. The influence of krq is greatest near to this
transition condition. At high kr values the curves tend to a slope like 1/zkr. This
can be used for the extension of the range of kr beyond the value kr=100, which

Figure 3. (a) Sound pressure level around a right-angled rigid corner produced by a line source
at (rq , qq ) at a distance from the illuminated flank. (b) As (a) but with a reduced range krE krq ,
to show more details.
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was the limit imposed by numerical errors (the value 10 lg (100/kr) is added to
L(100, 0)).

The next diagrams are concerned with the comparison of the corner scattering
with the screen scattering. Figures 5(a, b) show L(kr, 0) over kr for source
distances krq =3·55 and krq =56·6, respectively, for a variable corner angle U0 and
with qq =U0 (i.e., both the source and the receiving point are on flanks). As could
have been expected, the level reduction is strongest for a screen. In these diagrams

Figure 4. (a) Sound pressure level L(kr, 0) on the shadow flank of a right-angled corner for a line
source at the distance krq =3·55 with different source angles qq . (b) As (a) but with a larger source
distance krq =3·55.
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Figure 5. (a) Sound pressure level L(kr, 0) on the shadow flank of corners with different wedge
angles U0 for a line source at the distance krq =3·55 on the illuminated flank; qq =U0. (b) As (a)
but for a larger source distance krq =56·6.

the detour s=(Q, O, P)− (Q, P) and the ratio s/l0 are the same for all curves
with the same value of kr. Evidently the parameter s/l0 is not sufficient to describe
the scattering at corners with different corner angles. Figures 6(a, b) are similar
to Figures 5(a, b) except that now qq =210° is kept constant. Therefore, not only s
is constant, but also the deflection angle of the rays (source(Q)−origin(O)−field
point(P)). The difference in the level reduction by different corner angles now is
smaller than in Figures 5(a, b), but the difference of about DL1 2·5 dB for
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U0 =270° (right-angled corner) and U0 =360° (screen) is estimated as being too
high to be simply neglected.

The graphs of Figures 4(a)–6(b) contain L(kr, 0): i.e., the receiving point is on
the flank, the source angle qq is varied. The terms in the sums of equations (18a)
and (18b) are insensitive to the exchange q t qq : i.e., to the exchange of receiver
angle and source angle. If one exchanges receivert source, then (18a)t (18b)
must be exchanged also, if kr$ krq . This however needs no special consideration,

Figure 6. (a) Sound pressure level L(kr, 0) on the shadow flank of corners with different wedge
angles U0 for a line source at the distance krq =3·55 with a fixed source angle qq =210°. (b) As (a)
but with a larger source distance krq =56·6.
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Figure 7. Sound pressure level around a right-angled rigid corner produced by a plane wave from
the direction qq parallel to the illuminated flank.

because the curve branches for the two ranges are continuations of each other.
Also the factor pQ (0)/H(2)

0 (krq ) in front of the sums remains constant if the line
source remains the same; the resulting sound pressure which belongs to L(kr, 0)
must be corrected with a factor H(2)

0 (krq )/H(2)
0 (kr) after an exchange of source and

receiver positions if pQ (0) is kept constant. Thus, the graphs can be used also for
the cases when the source is on the illuminated flank and the receiver is distant
of the shadow flank. This fact will save computations in the determination of the
sound shielding by buildings (see below).

6. NUMERICAL RESULTS OF SINGLE CORNER SCATTERING WITH AN
INCIDENT PLANE WAVE

The above discussion concerning the exchange of receiver and source can now
be continued. This exchange now is completely described by the exchange q t qQ ,
which has no influence on equation (20). Figure 7 contains a 3D-plot of the sound
pressure level L(kr, q)=20 lg =p(kr, q)/pQ (0)= for U0 = qq =270° (i.e., the plane
wave propagates parallel to the ‘‘illuminated’’ flank); the radial variable is
changing in steps of Dkr=1 (beginning with krmin =0·5) and the angle q of the
field point in steps Dq=7·5°. Along the illuminated flank there exists a standing
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wave pattern coming from the reflection at the corner. The sound pressure level
steeply decreases in the shadow zone. In the next 3D-plot of Figure 8 the angle
from which the plane wave comes is reduced to qq =225°. In front of the
illuminated flank there exists a standing wave pattern similar to that which would
be produced by the reflection at an infinite rigid wall. However, there are
distortions of that pattern (as can be seen at the strong variations of the minima)
caused by the scattered wave from the corner. The slope of the level in the shadow
zone is smaller than in Figure 7. The last of the 3D-plots, Figure 9, is for a plane
wave angle qq =180°: i.e., for a propagation parallel to the second flank (the range
of kr is reduced). The standing wave pattern on the illuminated side becomes
simple only at large distances kr from the corner. On the second flank the sound
pressure level becomes constant at larger distances, after a steep slope within a
short distance of the corner.

Figure 10 for plane wave incidence corresponds to Figures 4(a, b) for excitation
by a line source; the angles qq are the same for these diagrams. Except for values
of qq 1 180° the sound pressure level L(kr, 0) on the shadow flank in Figure 10
with a plane wave agrees quite well with that in Figure 4(b) with a distant line
source. In Figure 11 L(kr, 0) is plotted for different wedge and wave angles U0 = qq

with a plane wave propagating parallel to the first flank (similar to Figures 5(a, b),

Figure 8. Sound pressure level around a right-angled rigid corner produced by a plane wave from
the direction qq =225°.
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Figure 9. Sound pressure level around a right-angled rigid corner produced by a plane wave from
the direction qq =180° parallel to the second flank.

but there with a cylindrical wave). These levels represent the minimum values
obtainable by a single corner scattering. The agreement between Figure 5(b) for
a distant line source and Figure 11 for a plane wave again is good. Finally
Figure 12 represents L(kr, 0) for a constant wave angle qq =210° and different
wedge angles U0. It is similar to Figure 6(b), which was for a distant line source.
The differences in L(kr, 0) for a plane wave remain below about 2 dB for
270°EU0 E 360°.

One can now come to the procedure for the determination of the sound shielding
by a building, but must discuss first the question of effective sources.

7. EFFECTIVE SOUND SOURCES

The theory as displayed above deals either with a single line source or with a
single incident plane wave. The first flank is assumed to extend to infinity. This
would correspond to a line source or a plane wave over a totally absorbing ground.
We should remember that we need the free field sound pressure level pQ (0) of the
source at the first corner (or more precisely: its absolute magnitude or sound
pressure level defined relatively to any reference level).
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Figure 10. Sound pressure level L(kr, 0) on the shadow flank of a right-angled corner for a plane
wave with different source angles qq .

Usually traffic noise is described as coming from an effective line source. If the
traffic noise level is acquired by measurements, then the ground reflection is
already included in the source strength and must not be considered separately. If
the noise comes from an elevated railway or from an overhead street, then the
computation should be repeated for the original source and for a source which
is mirror-reflected at the ground. Any ground absorption can be introduced by a
suitable reflection coefficient of the ground as a strength factor of the mirror

Figure 11. Sound pressure level at the second flank of corners with different wedge angle U0 for
a plane wave incident parallel to the first flank.
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Figure 12. Sound pressure level at the second flank of corners with different wedge angle U0 for
a plane wave incident with a fixed source angle qq =210°.

source. Because the sound signals from the original source and from the mirror
source become incoherent for sufficiently large distances between the two sources,
the squared magnitudes of the final sound pressure from the repeated calculations
can be added. For more precise calculations with coherent original and
mirror-reflected source, i.e., for smaller distances between them, the complex
results of the repeated calculations should be added (then, however, the condensed
form of the sound pressure level computation described below is no longer
applicable, and the analytical field representations from above should be used).
If the distance between the original and the reflected source is small, then it is
better and easier to start with an effective single source, especially if its distance
to the first corner is large enough.

A plane wave may be used as a representation for a sufficiently far away source.
A separate consideration of the original plane wave and of its ground reflection
generally will be necessary for elevated sources only. Most of the results shown
above are for sources which are below the prolongation of the second flank (i.e.,
which lie below the horizon of the corner as seen from the receiving point). The
results indicate that it generally does not pay (in the present context of noise
shielding) to apply a scattering calculation to a corner the second flank of which
is directly illuminated. When the ‘‘first corner’’ is mentioned in what follows, then
it is the first corner for which the source is below the horizon.

The present calculations and results also can be applied approximately for
point sources in the plane containing the source and normal to the corner, if
krq�1 so that the spherical variation of the field along the corner becomes
small. Then a line source with kz =0 in the source position would be a suitable
model.
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8. CALCULATION OF THE SOUND SHIELDING BY BUILDINGS

The fundamental facts for the calculation procedure are as follows.
The pattern of the sound field at a succeeding corner coming from the scattering

at the preceding corner is similar to that of a line source of approximate strength
at the preceding corner.

Except for sources very near to the horizon the level on the second flank steeply
decreases within a small distance from the corner at which scattering takes place.
Therefore, multiple scattering between succeeding and preceding corners generally
can be neglected.

The sound field is reciprocal with respect to q and qq .
The computations above require knowledge of the sound pressure of the source

=pQ (0)= at the scattering corner.
The determination of the noise shielding by buildings proceeds as follows.
Determine the wave number kz (if any) and with that the radial wave number

k from equation (3).
Decide whether the real source should be modelled by a plane wave (then

determined qq relative to the second flank of the first corner) or by a line source
(then determine rq and qq ).

Determine the sound pressure =pQ1(0)= of the source at the first corner.
Compute the sound pressure level L2(kb, 0) at the second corner (see Figure 1

for b).
Assume a line source in the first corner which produces the source level

20 lg (=pQ2(0)=)=L2(kb, 0) at the second corner.
Repeat the scattering calculation at the second corner with this =pQ2(0)=: i.e.,

measure the source and receiving point angles from the second flank of the second
corner and compute L3(kr, 0) in the third corner (if a third corner must be
considered, with r=distance between the second and third corners) or compute
L3(kr, q) if the second corner is the last corner (then r is the distance between this
last considered corner and the receiving point and q the angle between the last
flank and the receiving point).

Continue the procedure for the sequence of corners which must be considered.
The final result will give the sound pressure level at the receiving point relative

to the pressure =pQ1(0)= of the original source in the first corner. The assumed
condition is a totally absorbing ground below the receiving point. If the receiving
point is near to a reflecting ground, add 10 lg (1+ =r=2) to the computed level with
=r= the reflection coefficient of the ground. If the receiving point is at some distance
above the ground, then repeat the last step of the procedure with r, q the radius
and angle to the mirror-reflected (at the ground plane) receiving point. Add the
two contributions (magnitudes of sound pressure) with the second one multiplied
with =r=.

Depending on the local situation (height and length of the building), the
procedure must be repeated for the sound paths over the building and around the
building. It is evident that in practical applications the single corner scattering
must be computed very often. The computations can be reduced to the evaluation
of L(kr, 0) because of the reciprocity of the field behind a corner with respect to
q and qq . Therefore, in the next section, a method is derived for a fast computation
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of L(kr, 0). The use of L(kr, 0) for the evaluation of L(kr, q) (called L3(kr, q) in
the above description) shall be explained here in more detail.

As Figure 13 illustrates, the scattering at building corners (in the example
shown, with two corners) can be composed—under the conditions mentioned
above—by a repeated single corner scattering. The last corner generally is
associated with a non-zero receiver point angle q2, whereas in the preceding
scattering evaluations the receiver point angles were q=0: i.e., it was sufficient
to evaluate L(kr, 0). However, L(kr, 0) will be the main part of the evaluation in
the last scattering also, if one makes the exchanges q t qq , r2t rq2 and keep pQ2(0)
(the result of the preceding evaluation) constant, as is indicated by the transition
from the second to the third line in Figure 13. At the same time one has to
exchange the equations, (18a)t (18b) (first sums only). One evidently will obtain
the wanted level at the receiving point P when one adds to the lastly determined
L(kr, 0) (with a fictitious source at P) the term 20 lg =H(2)

0 (kr2)/H(2)
0 (krq2)=. Because

Figure 13. How the evaluation for the scattering at two succeeding corners can be reduced to the
repeated evaluation of L(kr, 0).
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Figure 14. Example for the polynomial approximation (curve) to the sound pressure level L(kr, 0)
at the second flank of a right-angled corner for a line source with krq 1 8·913, qq =247·5°.
Comparison with results of the analytical evaluation (points).

the ratio of magnitudes of Hankel functions of order zero equals the root of the
reciprocal ratio of their arguments, L(kr, 0) indeed is the main part of the last
scattering evaluation also.

9. SIMPLIFIED COMPUTATION OF L(kr, 0)

The quantity L(kr, 0) is the sound pressure level on the second flank of a corner
at a point a distance r from the scattering corner. The variable used for this
quantity is kr. It depends on the parameters of the wedge angle U0 and of the
source position parameters krq , qq in the case of a line source, and of the wave
direction qq for an incident plane wave. An implicit parameter is the source
strength =pQ (0)= at the scattering corner.

L(kr, 0) was computed for kr stepping through 1E krE 100 with a step
D lg (kr)=0·1 (i.e., with about one-third octave steps). The sampling points for
the parameters with U0 =270° and U0 =360° were 180°E qq EU0 with
Dqq =7·5° and Dqq =3·75° for U0 =225°. The source distance krq (for a
cylindrical wave) was taken midway between the sampling values of kr. The
computation time was 7·2 h for a cylindrical wave and 1·25 h for a plane wave.

The simplification begins with a polynomial least squared error fit to L(kr, 0):

L(kr, 0)= a0 + a1x+ a2x2 + · · · , x=lg (kr)

ai =6ai (U0, krq , qq )
ai (U0, qq ) 7 , i=60, 1, 2,

0, 1, 2, 3,
line source
plane wave7 . (22)
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T 1

(a) Coefficients bm,n (U0,i) of equation (24a) with a line source and two wedge angles U0 $ 2p

U0 =270° U0 =225°
ZXXXXXXXXXXXCXXXXXXXXXXXV ZXXXXXXXXXXXCXXXXXXXXXXXV

a0 a1 a2 a0 a1 a2

b0,0 −3·508914089 −8·048512868 −0·6310612470 −0·09540693872 −7·3238335049 −0·8765745279
b1,0 2·522196950 −0·009541528038 −0·1423972091 3·1825983742 3·0205071852 −1·2033629841
b2,0 −1·883348105 0·5769454995 0·01678228228 −2·2114376268 −0·08553799890 0·3513458955
b3,0 0·4967954203 −0·3051673769 0·04756468413 0·5797754874 −0·4849823570 0·03401430131
b0,1 0·02544989020 0·3821548481 −0·1407494337 −1·521470673 3·2843166927 −1·5290120909
b0,2 0·8345544874 0·2651097458 −0·08464913202 2·9650638176 −4·2599417741 1·9733888600
b1,1 0·3679533261 −0·6159740550 0·5043646313 3·5125797465 −7·6016950005 4·0117267131
b1,2 0·3777082514 3·292101514 −1·107819931 −4·4380492254 16·5213645840 −7·3478392442
b2,1 −0·09024391927 0·2958236606 −0·7181971540 −1·7393927223 4·2761593211 −2·3524985081
b2,2 −0·1947245060 −0·8724895618 0·8256508092 2·1463076803 −7·4133414548 4·8096517591

(b) Coefficients bm,n (U0, i) of equation (24b) with a line source and the wedge angle U0 =2p

U0 =360°
ZXXXXXXXXXXXCXXXXXXXXXXXV

a0 a1 a2

b0,0 −9·0746493294 −8·7968786424 −0·4550505284
b1,0 1·3520538823 −0·4605118745 0·1300965967
b2,0 −1·1527527549 0·2689865167 −0·06995829336
b3,0 0·3306858082 −0·03586357874 −0·03107882535
b0,1 −0·1455294858 0·6092864775 −0·2438201115
b0,2 0·5960196681 0·8416378006 −0·3079336093
b0,3 −0·008012063348 0·1356184578 −0·05023497076
b1,1 0·6291707040 −1·5301268286 0·7849193467
b1,2 0·8532798218 −1·5894224358 0·7181240230
b1,3 0·1325783868 −0·6606164056 0·2441835343
b2,1 −0·2481813528 0·7158176859 −0·7782697727
b2,2 −0·3078462069 0·6233222389 −0·7604596554
b2,3 −0·04647002117 0·2175905849 −0·2139967639
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T 2

Coefficients bm (U0, i) of equation (25) with a plane wave and different wedge angles
U0

a0 a1 a2 a3

U0 =270°
b0 −2·3897749010 −6·3871816950 −2·5521245973 0·5883191145
b1 −0·1395262072 1·4298990382 −2·3420050592 0·7953788225
b2 2·4146524033 −6·2941352347 14·7867785184 −5·5243620562
b3 −2·0826383489 22·1143696537 −38·0273605653 13·7842093181
b4 1·7277125263 −19·7690393085 36·1731866937 −13·6837211307
b5 −0·5024423058 5·5652217504 −10·7284415031 4·3492902596

U0 =225°
b0 1·5680782122 −3·0816597309 −3·7292266269 0·671069424680
b1 0·04605330206 −0·5413285417 1·0808880010 −0·5457149106
b2 0·9901780451 8·6690503927 −4·0768626382 3·3222271919
b3 1·8882278171 −24·2944777516 52·4234791286 −28·5329448742
b4 −1·2048732997 19·7879485353 −59·9341011899 41·1343130200
b5 −0·5572513587 0·7720284647 11·3285552296 −13·87141596900

U0 =360°
b0 −8·6190291475 −8·4954146753 −1·0515339568 0·2143116375
b1 −0·04914242523 0·6349841469 −2·3970346444 1·3968013166
b2 0·9889355168 −0·9414382840 6·1112326674 −3·9023864807
b3 −0·09677973083 0·9074414634 −5·9035085751 3·9492264464
b4 0·04314542296 −0·03120088534 2·0087474020 −1·5499399018
b5 −0·007092745198 −0·03111306942 −0·2088099622 0·2033883155

A squared polynomial turned out to be sufficient with a line source, and a cubic
polynomial with an incident plane wave. Figure 14 shows a typical example for
the fit of the polynomial curve to the points from the analytical evaluation. The
least squared error fit widely eliminates the numerical errors at kr1 krq of the
analytical evaluation. The coefficients ai (U0, krq , qq ) were determined for all
parameter combinations.

As a next step the coefficients ai with a line source were represented as functions
of z=lg (krq ) by a polynomial:

ai (krq )= c0 + c1z+ c2z2 + c3z3, z=lg (krq ),

cj = cj (U0, qq , i), j=0, 1, 2, 3. (23)

Figure 15. (a) Example for the complete polynomial approximation (curves) to the sound pressure
level L(kr, 0) at the second flank of a right-angled corner for a line source with small source distance
krq =1·122 and different source angles qq ; comparison with results of the analytical evaluation
(point). (b) Comparison of the complete polynomial approximation (curves) with results of the
analytical evaluation (points) as in (a), but for medium source distance krq =8·913. (c) Comparison
of the complete polynomial aproximation (curves) with results of the analytical evaluation (points)
as in (a), but for large source distance krq =70·79.
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Figure 15—(Caption opposite).
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A cubic polynomial was necessary for a sufficient precision (errors below 1/2 dB
between the analytical and approximated values of L(kr, 0)). This procedure did
end here, because it was not possible to find a simple representation of the
coefficients cj as a function of qq . Because 12 numerical coefficients cj would be
needed for every parameter value of qq , lists of these coefficients for enough qq

values would become voluminous.
Therefore, a two-dimensional regression of the coefficients ai (U0, krq , qq ) as

functions of z=lg (krq ) and y=(U0 − qq )rad was applied (the angular unit in
radians is used in order to make the ranges of z and y of similar size, which permits
one to estimate which terms in a polynomial are needed). The finally used
representation of the coefficients ai with a line source generally has the shape

ai (krq , qq )= b0,0 + b1,0z+ b2,0z2 + b3,0z3 + b0,1y+ b0,2y2

+ b1,1zy+ b1,2zy2 + b2,1z2y+ b2,2z2y2,

z=lg (krq ); y=(U0 − qq )rad; i=0, 1, 2, line source,

bm,n = bm,n (U0, i), U0 $ 2p, (24a)

and in the special case of a line source and U0 =360° (notice the change in y),

ai (krq , qq )= b0,0 + b1,0z+ b2,0z2 + b3,0z3 + b0,1y+ b0,2y2 + b0,3y3

ai (krq , qq )= b0,0 + b1,0z+ b2,0z2 + b3,0z3 + b0,1y+ b0,2y2 + b0,3y3

+ b1,1zy+ b1,2zy2 + b1,3zy3 + b2,1z2y+ b2,2z2y2 + b2,3z2y3,

z=lg (krq ), y=(qq −U0)rad, i=0, 1, 2, line source,

bm,n = bm,n (U0, i), U0 +2p. (24b)

Figure 16. Comparison of the complete polynomial approximation (curves) to results of the
analytical evaluation (points) of the sound pressure level L(kr, 0) at the second flank of a right-angled
corner for a plane wave incident under different source angles qq .
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The line source associated with U0 =360° is treated as a special case, because the
screen effectively does not exist for source angle values qq =180° and near to that;
the dominant source is the original source and not the scattering corner. This fact
makes necessary a special treatment.

The coefficients ai with an incident plane wave are computed with the
polynomial approximation

ai (qq )= b0 + b1y+ b2y2 + b3y3 + b4y4 + b5y5,

y=(U0 − qq )rad, i=0, 1, 2, 3, plane wave, bm = bm (U0, 0). (25)

The values of the coefficients bm,n for equation (24a) are shown in Table 1(a),
and for equation (24b) in Table 1(b), both for excitation by a line source. The
coefficients for equation (25) for plane wave incidence are given in Table 2.

Figures 15(a, b, c) compare so computed curves of L(kr, 0) with points from the
analytical evaluation for line sources with small krq =1·122, medium krq =8·913
and rather high krq =70·79, respectively, with the values qq =180, 225, 270° in
each diagram. The error is smaller than about 1/2 dB; one can see how the
approximations eliminate the errors in the analytical evaluation at kr= krq

(especially with large krq values). Figure 16 shows curves for an incident plane
wave computed with the approximation and compares with points from the
analytical evaluation. The errors are below about 0·25 dB. The application of the
polynomial approximations is restricted to the range 1E kE 100, 1E krq E 100,
180°E qq EU0.

10. CONCLUSION

Analytical expressions have been given for the sound field around a rigid corner
which is excited either by a line source or by an incident plane wave. The
expressions are based on a field analysis with wedge modes. It has been shown that
under most practical conditions multiple scattering between succeeding corners
can be neglected. This and the fact that the sound field at the shadow flank has
an azimuthal pattern like the field of a line source permits an easy evaluation of
the noise shielding by buildings. It has been shown how these computations can
be reduced to the evaluation of the level L(kr, 0) at shadow flanks. Simple
polynomial approximations are given for L(kr, 0), the precision of which is high
enough for noise control predictions.

REFERENCES

1. F. P. M 1998 Journal of Sound and Vibration 216, 649–671. Modes in lined
wedge-shaped ducts.

2. F. P. M 1998 Journal of Sound and Vibration 216, 673–696. Modal analysis in
lined wedge-shaped ducts.

3. International Standard ISO/DIS 9613-2, Acoustics—attenuation of sound during
propagation outdoors—Part 2: a general method of calculation; Verein Deutscher
Ingenieure VDI, Guidelines VDI 2720, Schallschutz durch Schirmung; Verein
Deutscher Ingenieure VDI, Guidelines VDI 2714, Schallausbreitung im Freien.



. . 132

4. M. M̈ 1995 Acustica 81, 565–586. Die Wirkung von zylindrischen Aufsätzen an
Schallschirmen.

5. F. P. M 19XX Schallabsorber. Stuttgart: S. Hirzel. See volume III, chapter 23:
Schallschirm mit absorbierendem Zylinder-Aufsatz.


	1. INTRODUCTION
	Figure 1

	2. SINGLE CORNER SCATTERING WITH A LINE SOURCE
	3. SINGLE CORNER SCATTERING WITH AN INCIDENT PLANE WAVE
	4. NUMERICAL EVALUATION METHODS
	Figure 2.
	Figure 3.

	5. NUMERICAL RESULTS OF SINGLE CORNER SCATTERING WITH A
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.

	6. NUMERICAL RESULTS OF SINGLE CORNER SCATTERING WITH AN
	Figure 8.
	Figure 9.

	7. EFFECTIVE SOUND SOURCES
	Figure 10.
	Figure 11.
	Figure 12.

	8. CALCULATION OF THE SOUND SHIELDING BY BUILDINGS
	Figure 13.
	Figure 14.

	9. SIMPLIFIED COMPUTATION OF 
	Table 1.
	Table 2.
	Figure 15.
	Figure 16.

	10. CONCLUSION
	REFERENCES

